Dijet Azimuthal Decorrelations

Michael Begel

begel@fnal.gov

University of Rochester

for the DØ Collaboration

$\Delta\phi$ Decorrelation

- Dijet production in lowest order pQCD
 - ullet jets have equal p_T and $\Delta\phi_{
 m dijet}=\pi$

$\Delta\phi$ Decorrelation

- Dijet production in lowest order pQCD
 - ullet jets have equal p_T and $\Delta\phi_{
 m dijet}=\pi$
- Additional soft radiation causes small azimuthal decorrelations
 - ullet $\Delta\phi_{
 m dijet}\sim\pi$
 - divergent in fixed-order pQCD

$\Delta \phi$ Decorrelation

- Dijet production in lowest order pQCD
 - ullet jets have equal p_T and $\Delta\phi_{
 m dijet}=\pi$
- Additional soft radiation causes small azimuthal decorrelations
 - $\Delta \phi_{
 m dijet} \sim \pi$

- Additional hard radiation can lead to large azimuthal decorrelations
 - ullet k_{\perp} large $\Rightarrow \Delta \phi_{
 m dijet} < \pi$
 - ullet $2\pi/3 \le \Delta \phi_{
 m dijet} < \pi$ for three-jet production

$\Delta\phi$ Decorrelation

- Dijet production in lowest order pQCD
 - ullet jets have equal p_T and $\Delta\phi_{
 m dijet}=\pi$
- Additional soft radiation causes small azimuthal decorrelations
 - $\Delta \phi_{
 m dijet} \sim \pi$

- Additional hard radiation can lead to large azimuthal decorrelations
 - $ullet k_{\perp}$ large $\Rightarrow \Delta \phi_{
 m dijet} < \pi$

 $\Delta\phi_{
m dijet}$ is directly sensitive to higher-order QCD radiation without explicitly measuring third and fourth jets \Rightarrow test $\mathcal{O}(\alpha_s^4)$ calculations

The Observable

- ullet ϕ decorrelation is a *three-jet observable*
- Three-jet NLO pQCD calculations are now available (NLOJET++)
 - Same theory calculation used in previous talk
- Tree-level pQCD calculations with up to six jet production are also available (ALPGEN)
 - Used extensively in top and higgs analyses
- We can also test parton shower models in HERWIG, PYTHIA, ...

The Measurement

- Inclusive Dijet Sample
 - Discussed in previous talk
- Observable: $\frac{1}{\sigma_{
 m dijet}} \cdot \frac{d\sigma_{
 m dijet}}{d\Delta\phi_{
 m dijet}}$
- Pesults are fully corrected to particle level, including unsmearing in p_T and position (< 20 mrad for $p_T > 80$ GeV)
- Systematic uncertainties dominated by jet energy calibration. The energy scale contributes $\approx 7\%$ near π and up to 23% at $\pi/2$ (larger at small $\Delta\phi_{\rm dijet}$ due to p_T reordering).

The Measurement

- Inclusive Dijet Sample
 - Four bins in leading jet p_T : 75, 100, 130, 180 GeV
 - Second leading jet: $p_T > 40~{
 m GeV}$
 - Both leading jets central: $|y_{
 m jet}| < 0.5$
- Increased $\Delta\phi$ correlation with larger $p_{T\,max}$

Theory Comparison - NLOJET++

$$ullet = rac{1}{\sigma_{
m dijet}}igg|_{
m (N)LO} rac{d\sigma_{
m dijet}}{d\Delta\phi_{
m dijet}}igg|_{
m (N)LO}$$

- LO pQCD (in 3-jet prod.)
 - Poor agreement no phase space at $< 2\pi/3$
 - ullet divergent at $oldsymbol{\Delta}\phi_{ ext{dijet}}=\pi$
- NLO pQCD (in 3-jet prod.)
 - Good description over large range
 - ullet Tree-level only for $\Delta\phi_{
 m dijet} < \overline{2\pi/3}$
 - lacktriangle divergent at $oldsymbol{\Delta}\phi_{ ext{dijet}}=\pi$

Theory Comparison – ALPGEN

- Tree-level production for $2 \rightarrow 2, 3,..., 6$ jets
- Uses PYTHIA parton showers
- Mangano's matching applied to properly add multiplicity bins
- Reasonable description of the data

Event Generator Comparisons

Third and fourth jets are generated via parton showers (uses soft and collinear approximations)

- HERWIG v6.505
 - very good description
- PYTHIA v6.225
 - poor description

(default parameters)

Event Generator Comparison's

Third and fourth jets are generated via parton showers (uses soft and collinear approximations)

- HERWIG v6.505
 - very good description
- PYTHIA v6.225
 - increase p_T cut-off in the ISR parton shower

PARP (67)=1
$$\Rightarrow$$
 4

improves description

Event Generator Comparison's

Third and fourth jets are generated via parton showers (uses soft and collinear approximations)

- HERWIG v6.505
 - very good description
- PYTHIA v6.225
 - increase p_T cut-off in the ISR parton shower

PARP (67) = $1 \Rightarrow 4$

Conclusions

- The DØ collaboration has measured the azimuthal decorrelation between the two leading jets at $\sqrt{s}=1.96$ TeV
- NLO pQCD describes the data very well
- LO pQCD fails to describe the data, but a tree-level calculation with up to six jet production is adequate
- HERWIG v6.505 with default parameters describes the data
- PYTHIA v6.225 with default parameters does not characterize the data, however, PYTHIA has many handles. In particular, increasing the maximum virtuality of the ISR shower significantly improves agreement at low $\Delta \phi_{\rm dijet}$.

Backup Slides

DØ Calorimeter

- Uranium—Liquid Argon Calorimeter stable, uniform response, radiation hard
- Compensating: $e/\pi \approx 1$
- Uniform hermetic coverage $|\eta| \le 4.2 \ [\eta \equiv -\ln \tan(\theta/2)]$
- Longitudinal Segmenation:
 - 4 EM Layers $(21X_0)$
 - 4–5 Hadronic Layers (6λ)
- Transverse Segmentation:
 - $lack \Delta \eta imes \Delta \phi = 0.05 imes 0.05$ in EM $_3$
 - $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ otherwise

Cone Jet Definition

Run I

- Add up towers around a "seed"
- Iterate, using "jets" as seeds, until stable
- $m{E}_T^{
 m jet} = \sum_{R_i < 0.7} E_T^{
 m tower}$
- Modifications for Run II.
 - Use 4-vector scheme p_T instead of E_T
 - Add midpoints between jets as additional seeds
 - Infrared safe
 - $lacksquare \Delta R = \sqrt{\Delta y^2 + \Delta \phi^2}$
- Correct to particle jets...

Jet Energy Scale

Measured jet energy is corrected to particle level

$$E_{corr} = rac{E_{uncorr} - O}{RS}$$

- O energy due to previous events, multiple interactions, noise, etc minimum bias events
- R calorimeter response to hadrons (dead material, non-linearities, etc)

 E_T imbalance in $\gamma + jet$ events

S net fraction of particle—jet energy remaining inside jet cone after showering in calorimeter

jet transverse shapes

Large statistical uncertainties and substantial systematic uncertainties (increase with energy due to extrapolation). $\gamma + jet \text{ statistics up to 200 GeV}$

Soft Physics

